"No evidence of dark matter particles whizzing through space will be found at LHC or anywhere else I predict. Dark matter is from virtual particles inside the vacuum. Here is more proof. Black holes do not eat dark matter because black holes cannot eat the vacuum. They can only eat real particles on mass-shell excited out of the vacuum." - Jack Sarfatti


"In recent years, astrophysicists have found growing evidence that super massive black holes sit at the heart of most galaxies, and certainly those with bulges in the middles.

The one at the centre of our galaxy is about 6 light hours across (not light years, thanks Mark!), about the size of the orbit of Neptune, and is equivalent in mass to several million Suns. We can see one extraordinary star, called S2, orbiting it every 15 years or so.

What's exciting about this link between black holes and galaxies is that it's beginning to look as if black holes and galaxies form together. And that the evolution of one regulates the other. That's a neat and exciting idea but it leads to a puzzle.

Astronomers assume that gravity holds galaxies together. They can get a good idea of this force by measuring the galactic mass. But many galactic discs rotate so quickly that centripetal forces ought to tear them apart.

Something else must be holding these galaxies together. The consensus view is that some kind of invisible stuff, called dark matter, does the trick. In fact, astronomers think that most galaxies sit in a halo of dark matter that is closely linked with the galactic disc.

Of course, if this is true, it's only natural to assume that dark matter must influence black holes too. So black holes must be able to grow by eating dark matter and that has big implications for how large they can become and for galactic evolution.

But this is where astrophysicists begin scratching their heads. They can see that black holes are often linked to the size of the bulges at the centre of galactic discs but there is no correlation between the size of black holes and the galactic discs themselves.

And that creates the puzzle: how can galactic discs and black holes both be correlated with dark matter but not to each other?"

To read the rest of the article, click here.

"This is great news for my idea that dark matter is quantum vacuum with net positive pressure from the zero point vacuum fluctuations. Dark energy is the opposite with net negative pressure." - Jack Sarfatti