Yesterday, we talked about which stars might be the most important ones for the near future of the search for habitable and inhabited planets. All the stars I mentioned are relatively close by and pretty bright, and some of them are already known to have planets. If and when potentially Earth-like worlds are found around these or other nearby stars, astronomers will begin lavishing them with attention in a process of discovery that will span generations. In all likelihood, entire careers and even subdisciplines of astronomy and planetary science will emerge from studying all the data we can remotely gather from a handful of promising worlds scattered among the nearest stars. If we are extremely lucky, and find signs of not only extraterrestrial life but also extraterrestrial intelligence, the consequences will spread beyond our sciences to shape and change our religion, philosophy, literature, and art.

And, if we did locate another pale blue dot circling a nearby star, for many people the next logical step would be to attempt to send people or machines there for direct investigation. It sounds simple enough, to send a spacecraft from point A through mostly empty space to point B. The Moon hangs shining in the sky along with the stars, and we've already sent explorers there, as well as robotic emissaries to all the solar system's planets. Reaching the stars shouldn't be that much harder—but it is.

Consider the problem from the simple viewpoint of velocity. It's easy to forget that until very recently, the fastest anyone had ever traveled on planet Earth was almost certainly about 200 kilometers per hour (kph), the terminal velocity of a plummeting human form past which air resistance impedes further acceleration. But then our species learned to build machines that use the fossilized sunlight in coal, gas, and oil to go even faster.

Good discussion.  To read the rest of the article, click here.