Circulating ultra-cold atoms around a ring exhibits superfluidity—the atomic version of superconductivity—potentially enabling sensors capable of tracking rotational motion in gyroscopes of unparalleled accuracy, according to the National Institute of Standards and Technology and Technology (NIST).
 
When gases are cooled to near absolute zero, they condense into a superfluid that can be launched around a ring to exhibit perpetual motion, similar to the manner in which superconducting quantum interference devices (squids) detectors circulate electrons around a superconducting ring. Such atomic Squids could enable ultra-precise gyroscopes the size of micro-electro-mechanical systems.
 
NIST researchers cooperated with the University of Maryland on the world's first atom-circuit formed by a loop of atoms in a superfluidic state which can be switched on and off with a laser controlled barrier. The research team was able to demonstrate perpetual motion—called persistent current—for a record-setting 40 seconds.

To read the rest of the article, click here.