The resistance of superconductivity to rational explanation has prompted the U.S. Department of Energy’s (DoE) Brookhaven National Laboratory to fabricate atomically perfect ultra-thin-films capable of accurately characterize the transition from an insulator to superconductor.
A normally insulating copper-oxide material (cuprate) was configured like the channel of a field-effect transistor (FET), using molecular beam epitaxy to create an atomically perfect superconducting film. So far the researchers have demonstrated that an external electric field can tune the temperature at which the material superconducts by as much 30 degrees Kelvin, a tenfold increase over previous reported results, according to principle researcher on the project, Ivan Bozovic.