Dark matter pervades the universe, giving shape to the cosmos on the grandest scales. So perhaps it is fitting that physicists are turning to a large-scale physics experiment to uncover what dark matter is made of.
Dark matter helps mold galaxy formation and accounts for five times the mass of all the ordinary, visible matter in the universe, but it has eluded direct detection for decades. Astronomers can see its gravitational effects—galaxies and galaxy clusters behave as if they have far more mass than ordinary matter alone can provide—but the particle nature of the stuff remains a mystery.
At a recent dark matter symposium at the Space Telescope Science Institute here, hopes for a solution via the Large Hadron Collider loomed large. The LHC, essentially a 27-kilometer particle racetrack buried 100 meters belowground near Geneva, started up in 2009 and quickly became the most powerful particle collider in the world. At a series of controlled impact points, protons boosted to near the speed of light collide head-on, and physicists sift through the outflying debris to look for hints of new physics.