In the search for superconductors, finding ways to compress hydrogen into a metal has been a point of focus ever since scientists predicted many years ago that electricity would flow, uninhibited, through such a material.
Liquid metallic hydrogen is thought to exist in the high-gravity interiors of Jupiter and Saturn. But so far, on Earth, researchers have been unable to use static compression techniques to squeeze hydrogen under high enough pressures to convert it into a metal. Shock-wave methods have been successful, but as experiments with diamond anvil cells have shown, hydrogen remains an insulator even under pressures equivalent to those found in the Earth's core.
To circumvent the problem, a pair of University at Buffalo chemists has proposed an alternative solution for metallizing hydrogen: Add sodium to hydrogen, they say, and it just might be possible to convert the compound into a superconducting metal under significantly lower pressures.
The research, published June 10 in Physical Review Letters, details the findings of UB Assistant Professor Eva Zurek and UB postdoctoral associate Pio Baettig.
To read the rest of the article, click here.