When a firefighter visited Steven White’s kindergarten class, the 5-year-old didn’t want to try on his big helmet. He wanted to know what velocity of water his hose could spray. When a musician visited, the boy wanted to know the frequencies of the sound waves from her instrument.
The teacher was so concerned she called his parents and advised them to stop putting so much academic pressure their young son. “It’s not us,” they replied. “It’s all him.”
White, now 51 and a globally recognized UC Irvine professor of physics & astronomy, says his physicist uncle may have had something to do with his early scientific inquiries. By second grade, White had decided he wanted to be a physicist too.
Fast-forward almost five decades, and that childhood dream has more than come true. As a young UCI assistant professor in 1992, White published a pioneering computer algorithm that helped crack quantum mechanics conundrums and has since led to a whole new field of computational physics.
This month, his latest breakthrough, successfully modeling a quantum spin liquid, is featured on the cover of Science magazine. Such a liquid is a new state of matter invisible to the naked eye that experts more than 30 years ago hypothesized might exist. It could be a key to understanding superconductivity and building quantum computers. White and graduate student Simeng Yan - in collaboration with a Princeton University physicist - created the first realistic computer model conclusively identifying a quantum spin liquid, depicting it as a wedge of darkness above a floating red and blue lattice of atomic connections.
To read the rest of the article, click here.