Using barium oxide nanoparticles, researchers have developed a self-cleaning technique that could allow solid oxide fuel cells to be powered directly by coal gas at operating temperatures as low as 750 degrees Celsius. The technique could provide a cleaner and more efficient alternative to conventional power plants for generating electricity from the nation's vast coal reserves.

Solid oxide fuel cells can operate on a wide variety of fuels, and use hydrocarbons gases directly -- without a separate reformer. The fuel cells rely on anodes made from nickel and a ceramic material known as yttria-stabilized zirconia. Until now, however, carbon-containing fuels such as coal gas or propane could quickly deactivate these Ni-YSZ anodes, clogging them with carbon deposits in a process known as "coking" -- especially at lower operating temperatures.

To counter this problem, researchers have developed a technique for growing barium oxide nanostructures on the anodes. The structures adsorb moisture to initiate a water-based chemical reaction that oxidizes the carbon as it forms, keeping the nickel electrode surfaces clean even when carbon-containing fuels are used at low temperatures.

To read the rest of the article, click here.