Dr. Dan Li, of the Monash University Department of Materials Engineering, and his research team have been working with a material called graphene, which could form the basis of the next generation of ultrafast energy storage systems.
“Once we can properly manipulate this material, your iPhone, for example, could charge in a few seconds, or possibly faster.” said Dr. Li.
Graphene is the result of breaking down graphite, a cheap, readily available material commonly used in pencils, into layers one atom thick. In this form, it has remarkable properties.
Graphene is strong, chemically stable, an excellent conductor of electricity and, importantly, has an extremely high surface area.
Dr. Li said these qualities make graphene highly suitable for energy storage applications.
“The reason graphene isn’t being used everywhere is that these very thin sheets, when stacked into a usable macrostructure, immediately bond together, reforming graphite. When graphene restacks, most of the surface area is lost and it doesn’t behave like graphene anymore.”
Now, Dr. Li and his team have discovered the key to maintaining the remarkable properties of separate graphene sheets: water. Keeping graphene moist – in gel form – provides repulsive forces between the sheets and prevents re-stacking, making it ready for real-world application.
To read the rest of the article, click here.