Researchers at the California Institute of Technology and the University of California, San Diego have discovered a way to prevent light signals on a silicon chip from reflecting backwards and interfering with its operation. Otherwise, the light beams would interfere with lasers and other photonic components on the chip and make the chip unstable. The breakthrough marks a significant achievement in the development of integrated photonic chips that could replace electronic chips as the backbone of information technology. Their findings are published Aug. 5 in the journal Science.

Although information systems now rely primarily on fiber optic networks to connect and share data around the world using photons instead of electrons, the underlying computer technology is still based on electronic chips, which are slower and more prone to data loss than photonic chips. Lab versions of photonic chips being developed across the industry are already supporting data transfer rates of 10 gigabits per second, and in just five years, photonic chips could achieve data transfer rates of over 40 Gbps – an order of magnitude higher than the speed of today's networks. The shift towards optical networks will make information sharing faster, more energy-efficient and less costly.

To read the rest of the article, click here.