Just as a camera flash illuminates unseen objects hidden in darkness, a sequence of laser pulses can be used to study the elusive quantum behavior of a large "macroscopic" object. This method provides a novel tool of unprecedented performance for current experiments that push the boundaries of the quantum world to larger and larger scales.
A collaboration of scientists led by researchers from the Vienna Center for Quantum Science and Technology (VCQ) at the University of Vienna report this new scheme in the forthcoming issue of the Proceedings of the National Academy of Sciences.
One of the most fascinating and still open questions in physics is how far quantum phenomena extend into our everyday world. To answer that, experiments need to peer into the quantum world at a completely new scale of mass and size. This is a bumpy road: it becomes increasingly difficult to detect the genuine quantum features as mass and size are increased.
To read the rest of the article, click here.