Some recent work on Type 1a supernovae velocities suggests that the universe may not be as isotropic as our current standard model (LambdaCDM) requires it to be.

The requires the to be isotropic and homogeneous – meaning it can be assumed to have the same underlying structure and principles operating throughout and it looks measurably the same in every direction. Any significant variation from this assumption means the standard model can’t adequately describe the current universe or its evolution. So any challenge to the assumption of isotropy and homogeneity, also known as the cosmological principle, is big news.

Of course since you are hearing about such a paradigm-shifting finding within this humble column, rather than as a lead article in Nature, you can safely assume that the science is not quite bedded down yet. The Union2 data set of 557 Type 1a , released in 2010, is allegedly the source of this latest challenge to the cosmological principle – even though the data set was released with the unequivocal statement that the flat concordance LambdaCDM model remains an excellent fit to the Union2 data.

To read the rest of the article, click here.