Even with today's invisibility cloaks, people can't walk through walls. But, when paired together, millions of electrons can.
The electrons perform this trick, called macroscopic quantum tunneling, when they pair up and move into a region of space that is off-limits under the laws of classical mechanics.
The problem is that as millions of electrons collectively move through a superconducting nanowire, they use energy and give off heat.
The heat can build, transforming sections of the wire into a non-superconducting state. The process, called a phase slip, adds resistance to an electrical system and has implications for designing new nano-scale superconductors.
Now, scientists have observed individual phase slips in aluminum nanowires and characterized the nature and temperature at which they occur. This information could help scientists remove phase slips from nano-scale systems, which could lead to more reliable nanowires and more efficient nano-electronics, said Duke physicist Albert Chang.
To read the rest of the article, click here.