Most of today’s electronics devices contain two different types of field-effect transistors (FETs): n-type (which use electrons as the charge carrier) and p-type (which use holes). Generally, a transistor can only be one type or the other, but not both. Now in a new study, researchers have designed a transistor that can reconfigure itself as either n-type or p-type when programmed by an electric signal. A set of these “universal transistors” can, in principle, perform any Boolean logic operation, meaning circuits could perform the same number of logic functions with fewer transistors. This advantage could lead to more compact hardware and novel circuit designs.
The researchers who designed the transistor, led by Walter M. Weber at Namlab gGmbH in Dresden, Germany, have published the new concept in a recent issue of Nano Letters.
“Synthetic nanowires are used to realize the proof-of-principle,” Weber told PhysOrg.com. “However, the concept is fully transferable to state-of-the-art CMOS silicon technology and can make use of self-aligned processes.”
To read more, click here.