Researchers show how to store quantum bits at room temperature using a less complex process for seconds at a time.

The quantum world and the everyday world of human experience are supposed to be two different realms. Quantum effects, as demonstrated in the lab, are usually confined to the tiniest scales. They last for imperceptibly brief instants. And they appear mostly in highly controlled systems operating at cryogenic temperatures near absolute zero.

But experimental physicists are pushing across the assumed divide between the quantum and the ordinary by demonstrating quantum effects in more familiar environments. Now a group of researchers has furthered that cause by encoding quantum information into a room-temperature solid for time spans that can be ticked off on a stopwatch. The new quantum memory scheme can store information for more than a second, which extends by orders of magnitude the lifetime of information encoded as a quantum bit, or qubit, on a particle at ordinary temperatures. The American, German and British researchers have only just submitted the research to a peer-reviewed journal, but here in late February they presented their findings to a meeting of the American Physical Society.

To read more, click here.