Researchers from the Georgia Institute of Technology and University of California San Francisco have advanced scientists' ability to view a clear picture of a single cellular structure in motion. By identifying molecules using compressed sensing, this new method provides needed spatial resolution plus a faster temporal resolution than previously possible.

Despite many achievements in the field of super-resolution microscopy in the past few years with spatial resolution advances, live-cell imaging has remained a challenge because of the need for high temporal resolution.

Now, Lei Zhu, assistant professor in Georgia Tech's George W. Woodruff School of Mechanical Engineering, and Bo Huang, assistant professor in UCSF's Department of Pharmaceutical Chemistry and Department of Biochemistry and Biophysics, have developed an advanced approach using super-resolution microscopy to resolve cellular features an order of magnitude smaller than what could be seen before. This allows the researchers to tap previously inaccessible information and answer new biological questions.

To read more, click here.