People use electromagnetic energy every day … watching television, listening to the radio, popping corn with a microwave, taking an X-ray or using a cellphone. This energy travels in the form of waves, which are widely used in electronic and wireless devices.

One of the hottest areas of the electromagnetic spectrum being explored today is the (THz) range. Terahertz waves, lying between microwave and optical frequencies, offer improved performance for a variety of applications in everyday life. For instance, THz waves can carry more information than radio/microwaves for communications devices. They also provide medical and biological images with higher resolution than microwaves, while offering much smaller potential harm of exposure than X-rays.

Researchers at the University of Notre Dame have shown that it is possible to efficiently manipulate THz electromagnetic waves with atomically thin layers. This achievement, which was recently published in Nature Communications, sets the stage for development of compact, efficient and cost-effective devices and systems operating in the THz band.

“A major bottleneck in the promise of THz technology has been the lack of efficient materials and devices that manipulate these energy waves,” says Berardi Sensale-Rodriguez, a graduate student in the Department of Electrical Engineering at Notre Dame. “Having a naturally two-dimensional material with strong and tunable response to THz waves — for example, graphene — gives us the opportunity to design THz devices achieving unprecedented performance.”

To read more, click here.