Researchers at NPL have demonstrated for the first time a monolithic 3D ion microtrap array which could be scaled up to handle several tens of ion-based quantum bits (qubits). The research, published in Nature Nanotechnology, shows how it is possible to realise this device embedded in a semiconductor chip, and demonstrates the device's ability to confine individual ions at the nanoscale.

As the UK's National Measurement Institute, NPL is interested in how exotic quantum states of matter can be used to make high precision measurements, of for example, time and frequency, ever more accurate. This research, however, has implications wider than measurement. The device could be used in quantum computation, where entangled qubits are used to execute powerful quantum algorithms. As an example, factorisation of large numbers by a quantum algorithm is dramatically faster than with a classical algorithm.

To read more, click here.