A new material developed at Harvard and MIT adds a distinctly cybernetic element to the science of tissue engineering. The 3-D mesh of transistors and cells, which can support tissue growth while monitoring its health and progress, could even be a step toward prosthetic devices that connect directly to the nervous system.

Tissue scaffolds have been used successfully for some time to coax cells to grow, and they can even be used to grow artificial blood vessels. Previous research has tried to incorporate electronic sensors into these scaffolds, but they have been limited to two-dimensional flat planes, with cells growing on top of transistors or electrodes.

This time, scientists led by MIT professor Robert Langer and Harvard chemistry professor Charles Lieber set out to build a 3-D scaffold that more closely resembles real tissue. The team wanted to build sensors that would let them monitor how the tissue responds to drugs in real time.

To read more, click here.