Dark matter makes up about 23 percent of the mass-energy content of the universe, even though we don’t know what it is or have yet to directly see it (which is why it’s called “dark”). So how can we detect it and when we do, what will it reveal about the universe? In mid-October, more than 100 cosmologists, particle physicists and astrophysicists gathered for a meeting called "Dark Matter Universe: On the Threshold of Discovery" at the National Academy of Sciences’ Beckman Center in Irvine, CA. Their goal: to take stock of the latest theories and findings about dark matter, assess just how close we are to detecting it and spark cross-disciplinary discussions and collaborations aimed at resolving the dark matter puzzle.

The image above is one of the most detailed maps of dark matter in our universe ever created. The location of the dark matter (tinted blue) was inferred through observations of magnified and distorted distant galaxies seen in this picture.

"Figuring out what is dark matter has become a problem that astrophysicists, cosmologists and particle physicists all want to solve, because dark matter is central to our understanding of the universe," says Michael S. Turner – Rauner Distinguished Service Professor and Director of the Kavli Institute for Cosmological Physics at the University of Chicago. "We now have a compelling hypothesis, namely that dark matter is comprised of WIMPs (Weakly Interacting Massive Particle), particles that don’t radiate light and interact rarely with ordinary matter. After decades of trying to figure out how to test the idea that dark matter is made up of WIMPs, we have three ways to test this hypothesis. Best of all, all three methods are closing in on being able to either confirm or falsify the WIMP. So the stars have truly aligned."

 To read more, click here.