Somewhere inside of your body right now, a delicate membrane is tearing open. Now a leak is springing, and fluids that were not supposed to have gotten past the membrane are gushing through at the point of the tear.

Fortunately, this leak is very small and you can't feel it. Unfortunately, your insides have sprung many other leaks since that first one. Fortunately, at the site of leak #1, several long, sticky molecules that were previously coiled like fruit roll-ups have come unrolled in the sudden torrent, and they're sticking to small solid fragments and forming little globs that are getting tangled up with other globs, and now the whole blob is plugging the leak, patching things up temporarily until the reinforcements arrive.

That this process plays out many millions of times each day is one of the marvels of the human body, but that's not why MIT materials scientist Alfredo Alexander-Katz and his colleagues have been studying it. Rather, the researchers want to replicate the process outside the human body, using slightly different ingredients to create synthetic materials that self-assemble and self-heal.

To read more, click here.