A new way of growing graphene without the defects that weaken it and prevent electrons from flowing freely within it could open the way to large-scale manufacturing of graphene-based devices with applications in fields such as electronics, energy, and healthcare.
A team led by Oxford University scientists has overcome a key problem of growing graphene -- a one atom-thick layer of carbon -- when using an established technique called chemical vapour deposition, that the tiny flakes of graphene form with random orientations, leaving defects or 'seams' between flakes that grow together.
The discovery, reported in a paper published in ACS Nano, reveals how these graphene flakes, known as 'domains', can be lined up by manipulating the alignment of carbon atoms on a relatively cheap copper foil -- the atomic structure of the copper surface acts as a 'guide' that controls the orientation of the carbon atoms growing on top of them.
To read more, click here.