AIST researchers have developed a graphene transistor with a new operating principle. In the developed transistor, two electrodes and two top gates are placed on graphene and graphene between the top gates is irradiated with a helium ion beam to introduce crystalline defects. Gate biases are applied to the two top gates independently, allowing carrier densities in the top-gated graphene regions to be effectively controlled. An electric current on/off ratio of approximately four orders of magnitude was demonstrated at 200 K (approximately −73 °C). In addition, its transistor polarity can be electrically controlled and inverted, which to date has not been possible for transistors. This technology can be used in the conventional production technology of integrated circuits based on silicon, and is expected to contribute to the realization of ultra-low-power-consumption electronics by reducing operation voltage in future.

 To read more, click here.