In a world overwhelmed by increasing amounts of data, finding new ways to store and process information has become a necessity. Conventional silicon-based electronics has experienced rapid and steady growth, thanks to the progressive miniaturization of its basic component, the transistor, but that trend cannot continue indefinitely.

In conventional devices, information is stored and manipulated in binary form: The elementary components of these devices—the so-called bits—have two states, each of which encodes the binary 0 or 1. To move beyond the binary system, one can exploit the laws of quantum mechanics. A quantum-mechanical object with two energy levels at its disposal can occupy either of those two levels, but also an arbitrary combination ("superposition") of the two, much like an electron in a two-slit experiment can go through both slits at once. This results in infinitely many quantum states that a single quantum bit, or "qubit," can take; together with another strange property of quantum mechanics—entanglement—it allows for a much more powerful information platform than is possible with conventional components.

To read more, click here.