America alone produces about 2,000 metric tons of nuclear waste annually and our best solution for disposing of it: bury it deep in the Earth. However, a pair of MIT scientists believe they've found not only a better way of eliminating nuclear waste but recycling the deadly detritus into enough clean electricity to power the entire world until 2083. Win, meet win.

The conventional nuclear power method involves inserting radioactive rods into a reactor core where their fissionable material is converted into energy. Problem is, it's not particularly efficient. Over the four years or so that a rod will remain in use, only about three percent of its available nuclear material is expended, leaving 97 percent as "waste." And since nobody seems particularly willing to just fling it into the Sun, this waste must be disposed of in a nuclear repository site like Yucca Mountain, Nevada. Over the past forty years or so, the US has generated 67,500 metric tons of the stuff—enough to cover a football field with spent fuel rods to a depth of seven yards. But what if there were a way to recycle the waste and recapture the remaining energy? There is.

Molten salt reactors are nuclear reactors which use a molten fluoride salt mixture as the primary coolant. These salts have proven to be far superior heat sinks than the helium used in light-water reactors, which greatly reduces the need for supplementary cooling. The nuclear fuel (uranium tetrafluoride) can also be dissolved directly into the coolant as well. When the fluid is inserted into a graphite core, the mix goes critical and drives a turbine to generate electricity. Unlike conventional light-water reactors, an MSR operates at very high temperatures to achieve thermodynamic efficiency but remain at atmospheric pressure to reduce mechanical stress on the system.

To read more, click here.