Remember when each new crop of computers was ever so much faster than the previous models? Well, those good-old days ended about five years ago when the accelerating rate of computing speeds crashed into the impenetrable wall of fundamental physics. The problem, according to Penn State Professor of Physics Nitin Samarth, involves electricity—specifically, the way computer components called transistors use electricity to compute. The solution he is working on is to develop new materials for radically new and super-fast kinds of transistors that rely on magnetism, instead of on the flow of electrons. This radically new way of computing is called "spintronics."
Read more at: http://phys.org/news/2013-04-spintronics-ways-efficiency.html#jCp
Read more at: http://phys.org/news/2013-04-spintronics-ways-efficiency.html#jCp
Remember when each new crop of computers was ever so much faster than the previous models? Well, those good-old days ended about five years ago when the accelerating rate of computing speeds crashed into the impenetrable wall of fundamental physics. The problem, according to Penn State Professor of Physics Nitin Samarth, involves electricity—specifically, the way computer components called transistors use electricity to compute. The solution he is working on is to develop new materials for radically new and super-fast kinds of transistors that rely on magnetism, instead of on the flow of electrons. This radically new way of computing is called "spintronics."
To read more, click here.