Scientists in California have proposed a new type of gravitational-wave detector that is immune to laser noise – a problem that adds to the expense of current detector designs. The researchers believe that their proposal – a modified form of an atom interferometer – would be cheaper and easier to implement in space than current laser interferometers.
Gravitational waves are tiny perturbations in the curvature of space–time that arise from accelerating masses – according to Einstein's general theory of relativity. The first hint that the waves exist was spotted in 1974 as a gradual decrease of the orbital period of the pulsar PSR B1913+16, which circles a neutron star. However, no-one has directly detected a gravitational wave. Such a discovery would provide confirmation of general relativity and also open a new field of gravitational-wave astronomy, in which distant objects could be studied by the waves they emit.
To read more, click here.