One of the exciting possibilities of metamaterials – engineered materials that exhibit properties not found in the natural world – is the potential to control light in ways never before possible. The novel optical properties of such materials could lead to a "perfect lens" that allows direct observation of an individual protein in a light microscope or, conversely, invisibility cloaks that completely hide objects from sight.
Although metamaterials have revolutionized optics in the past decade, their performance so far has been inhibited by their inability to function over broad bandwidths of light. Designing a metamaterial that works across the entire visible spectrum remains a considerable challenge.
Now, Stanford engineers have taken an important step toward this future, by designing a broadband metamaterial that more than doubles the range of wavelengths of light that can be manipulated.
The new material can exhibit a refractive index – the degree to which a material skews light's path – well below anything found in nature.
To read more, click here.