A newly-developed “quantum microscope” uses photoionization and an electrostatic magnifying lens to directly observe the electron orbitals of an excited hydrogen atom.

he wave function plays a fundamental role in quantum theory, yet a direct observation of it remains elusive. Observable properties, such as the position of an atom or the momentum of an electron, arise from projecting the wave function onto an eigenstate. However, each projection only reveals a portion of the underlying wave function and often destroys uniquely quantum features, like superposition and entanglement. The full quantum state is only realized by statistically averaging over many measurements. A tool that directly magnifies the microscopic state of a quantum particle onto the laboratory scale could, potentially, render some quantum properties directly perceptible. More practically, such a quantum microscope could aid development of atomic and molecular-scale technologies.

Writing in Physical Review Letters, Aneta Stodolna, of the FOM Institute for Atomic and Molecular Physics (AMOLF) in the Netherlands, and her colleagues demonstrate how photoionization microscopy directly maps out the nodal structure of an electronic orbital of a hydrogen atom placed in a dc electric field [1]. This experiment—initially proposed more than 30 years ago—provides a unique look at one of the few atomic systems that has an analytical solution to the Schrödinger equation. To visualize the orbital structure directly, the researchers utilized an electrostatic lens that magnifies the outgoing electron wave without disrupting its quantum coherence. The authors show that the measured interference pattern matches the nodal features of the hydrogen wave function, which can be calculated analytically. The demonstration establishes the microscopy technique as a quantum probe and provides a benchmark for more complex systems.

To read more, click here.