Our present understanding of thermodynamics is fundamentally incorrect if applied to small systems and needs to be modified, according to new research from University College London (UCL) and the University of Gdańsk. The work establishes new laws in the rapidly emerging field of quantum thermodynamics.
The findings, published today in Nature Communications, have wide applications in small systems, from nanoscale engines and quantum technologies, to biological motors and systems found in the body.
The laws of thermodynamics govern much of the world around us – they tell us that a hot cup of tea in a cold room will cool down rather than heat up; they tell us that unless we are vigilant, our houses will become untidy rather than spontaneously tidy; they tell us how efficient the best heat engines can be.
The current laws of thermodynamics only apply to large objects, when many particles are involved. The laws of thermodynamics for smaller systems are not well understood but will have implications for the construction of molecular motors and quantum computers, and might even determine how efficient energy extracting processes such as photosynthesis can be.
In this study researchers used results from quantum information theory to adapt the laws of thermodynamics for small systems, such as microscopic motors, nanoscale devices and quantum technologies.