Byon's team is involved in alternative energy research and, specifically, improving the performance of lithium-based . In their research they turned to an 'aqueous' system in which the organic electrolyte in conventional lithium-ion cells is replaced with water. Such aqueous lithium battery technologies have gained attention among alternative energy researchers because of their greatly reduced fire risk and environmental hazard. Aqueous solutions also have other advantages, which include an inherently high ionic conductivity.

Read more at: http://phys.org/news/2013-07-batteries.html#jCp

Lithium-ion batteries are now found everywhere in devices such as cellular phones and laptop computers, where they perform well. In automotive applications, however, engineers face the challenge of squeezing enough lithium-ion batteries onto a vehicle to provide the desired power and range without introducing storage and weight issues. Hye Ryung Byon, Yu Zhao and Lina Wang from the RIKEN Byon Initiative Research Unit have now developed a lithium-iodine battery system with twice the energy density of conventional lithium-ion batteries.

Byon's team is involved in alternative energy research and, specifically, improving the performance of lithium-based battery technologies. In their research they turned to an 'aqueous' system in which the organic electrolyte in conventional lithium-ion cells is replaced with water. Such aqueous lithium battery technologies have gained attention among alternative energy researchers because of their greatly reduced fire risk and environmental hazard. Aqueous solutions also have other advantages, which include an inherently high ionic conductivity.

To read more, click here.