Nearly a century after the world's greatest physicist, Albert Einstein, first predicted the existence of gravitational waves, a global network of gravitational wave observatories has moved a step closer to detecting the faint radiation that could lead to important new discoveries in our universe.
David Blair is a Winthrop Professor of Physics at The University of Western Australia and Director of the Australian International Gravitational Research Centre at Gingin - 87km north of Perth. He leads the WA component of a huge international team that has announced a demonstration of a new measurement technique called 'quantum squeezing' that allows gravitational wave detectors to increase their sensitivity.
"This is the first time the quantum measurement barrier has been broken in a full scale gravitational wave detector," Professor Blair said. "This is like breaking the sound barrier: some people said it would be impossible. Breaking that barrier proved that supersonic flight was possible and today we know that it is not a barrier at all.