Superconductivity is a phenomenon of exactly zero electrical resistance and expulsion of magnetic fields occurring in certain materials when cooled to a temperature of hundreds of degrees below zero. Warmed beyond those frigid conditions, the materials cross a critical temperature threshold and the superconductivity breaks down. But high-temperature superconductors (HTS)—warmer, but still subzero—may have untapped potential because their underlying mechanism remains a mystery. Unlocking that unknown HTS source and engineering new superconductor configurations could drive that critical temperature high enough to revolutionize energy technology.
Now, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have discovered an unexpected and anomalous pattern in the behavior of one high-performing class of HTS materials. In the new frontier of interface physics, two non-conducting materials can be layered to produce HTS behavior, with tantalizing and mystifying results. Testing a sample set of unprecedented size—more than 800 distinct, custom-made materials—the researchers found that the critical temperature for superconductivity remained constant across a wide range of atomic compositions.
“Theory predicted that the critical temperature in these interface samples would depend strongly on the electron content, but we saw no such dependence,” said Brookhaven physicist Ivan Bozovic, lead investigator on the new study. “We are exploring uncharted territory with unprecedented precision.”
To read more, click here.