The recently discovered Higgs boson is best known for its important role in explaining particle mass. But now some physicists are wondering if the Higgs could have played an equally significant role in generating dark matter and baryonic matter in the early Universe, as well as causing the hypothetical dark matter asymmetry and the observed baryon asymmetry between matter and antimatter particles.

In a new paper published in Physical Review Letters, physicists Géraldine Servant at CERN, the Autonomous University of Barcelona, and CEA Saclay in France, and Sean Tulin at the University of Michigan in Ann Arbor, call this theoretical scenario "Higgsogenesis."

"With the Higgs discovery, the final piece of the Standard Model of particle physics has been put into place," Servant told Phys.org. "Now, it is a natural question to ask: could the Higgs boson have been important in the early Universe to help explain two observational puzzles that the Standard Model cannot: the origin of dark matter and the matter-antimatter asymmetry? In the very early Universe, the Higgs particle was distinct from its antiparticle. We show that an asymmetry between Higgs and anti-Higgs might have been the missing link connecting the densities of visible and dark matter, which observationally are quite similar."

To read more, click here.