Theories involving the Dirac oscillator, the relativistic version of the harmonic oscillator, show up in fields from nuclear physics to quantum optics, and now a team reporting in Physical Review Letters has used microwaves to produce the first experimental realization of it. In previous theoretical work, three of the authors showed that they could reproduce the properties of a Dirac oscillator using a seemingly unrelated system—a single particle bouncing through a one-dimensional array of pairs of potential wells. The distances between the wells were not periodic but increased monotonically along the array.

In recent experimental work, the team replaced the wells with millimeter-scale dielectric cylinders sandwiched between a pair of metallic plates. With this setup, they demonstrated the energy-level structure for various quantum systems. Now, John Franco-Villafañe, from the National Autonomous University of Mexico Cuernavaca, and colleagues have tackled the Dirac oscillator.

To read more, click here.