A breakthrough in quantum cryptography demonstrates that information can be encrypted and then decrypted with complete security using the combined power of quantum theory and relativity - allowing the sender to dictate the unveiling of coded information without any possibility of intrusion or manipulation.

Read more at: http://phys.org/news/2013-11-quantum-envelope-enables-perfectly-storage.html#jCp

A breakthrough in quantum cryptography demonstrates that information can be encrypted and then decrypted with complete security using the combined power of quantum theory and relativity - allowing the sender to dictate the unveiling of coded information without any possibility of intrusion or manipulation.

Scientists sent encrypted data between pairs of sites in Geneva and Singapore, kept "perfectly secure" for fifteen milliseconds - putting into practice what cryptographers call a 'bit commitment' protocol, based on theoretical work by study co-author Dr Adrian Kent, from Cambridge's Department of Applied Mathematics and Theoretical Physics.

Researchers describe it as the first step towards impregnable information networks controlled by "the combined power of Einstein's relativity and quantum theory" which might one day, for example, revolutionise financial trading and other markets across the world.

To read more, click here.