Understanding superconductivity -- whereby certain materials can conduct electricity without any loss of energy -- has proved to be one of the most persistent problems in modern physics. Scientists have struggled for decades to develop a cohesive theory of superconductivity, largely spurred by the game-changing prospect of creating a superconductor that works at room temperature, but it has proved to be a tremendous tangle of complex physics.
Now scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have teased out another important tangle from this giant ball of string, bringing us a significant step closer to understanding how high- temperature superconductors work their magic. Working with a model compound, the team illuminated the origins of the so-called "stripe phase" in which electrons become concentrated in stripes throughout a material, and which appears to be linked to superconductivity.
To read more, click here.