Researchers from ETH Zurich have developed an algorithm that simulates high-temperature superconductivity much faster.
 
Peter Staar, a doctoral student under Thomas Schulthess at ETH Zurich, refined an algorithm for the simulation of solid bodies like superconductors during his doctorate. Thanks to the algorithm, the researchers reach their goal considerably more rapidly than before – in some cases even up to a billion times faster, say the scientists. Using the algorithm on the supercomputer “Titan” at Oak Ridge National Laboratory, they managed to carry out 15,000 trillion computational operations per second – fifteen petaflops. However, not only does the new algorithm work faster; the scientists have also used it to overcome two central problems in the simulation of high-temperature superconductors. Moreover, the new calculations reveal that the simplest models do not rule out superconductivity at room temperature.

To read more, click here.