emiconductor structures can guide electron motion in versatile ways, so researchers have begun using them to explore the electron’s wavelike, quantum-mechanical nature. But the task is complicated by the constant jostling electrons face in a solid. In Physical Review Letters, researchers describe a way to inject electrons individually with a high energy that makes them easy to distinguish from the others in the semiconductor. The team precisely timed the motion of the injected electrons across a micrometer-sized sample and found that most electrons made the trip without losing energy. If they can also avoid collisions that disrupt their quantum state, these electrons could provide new ways to test fundamental quantum behavior.
Experiments in the field of quantum optics have demonstrated a wide range of quantum behaviors for light. Lately, researchers have begun replicating some of these experiments using the wave nature of electrons in solids, for example, probing the details of the interference between a pair of electrons [1]. Masaya Kataoka of the National Physical Laboratory (NPL) in Teddington, UK, and his colleagues suspected that the experiments would be easier with electrons having energies far above that of thermally excited electrons. But “before we did these experiments, some people told me it’s impossible to detect this, because an electron quickly loses energy” as it travels through a material, says Kataoka. The energy loss was seen in earlier experiments done by others [2].
To read more, click here.