High-temperature superconductors exhibit a frustratingly varied catalog of odd behavior, such as electrons that arrange themselves into stripes or refuse to arrange themselves symmetrically around atoms. Now two physicists propose that such behaviors – and superconductivity itself – can all be traced to a single starting point, and they explain why there are so many variations.

This theory might be a step toward new, higher-temperature superconductors that would revolutionize electrical engineering with more efficient motors and generators and lossless power transmission.

J.C. Séamus Davis, the James Gilbert White Distinguished Professor in the Physical Sciences at Cornell and director of the Center for Emergent Superconductivity at Brookhaven National Laboratory, and Dung-Hai Lee, professor of physics at the University of California-Berkeley and faculty scientist at Lawrence Berkeley National Laboratory, describe their theory in the Oct. 7 issue of the Proceedings of the National Academy of Sciences.

The oddities, known as intertwined ordered phases, seem to interfere with superconductivity. "We now have a simple way to understand how they are created and hopefully this understanding will help us to know how to get rid of them,"
said Lee.

To read more, click here.