Tyndall National Institute and its collaborators are unravelling how atoms vibrate and change when hit with intense bursts of light. The ground-breaking work has been recognised through publication of a paper in Nature Physics.

The collaborative research, led at the Tyndall National Institute by Prof. Stephen Fahy, is currently using x-ray lasers to investigate how natural vibrations of molecules and solids are excited by intense bursts of light. The x-ray laser generates pulses so short that they can capture a snapshot of the moving atoms in less than a billionth of a billionth of a second, which enables researchers to better understand how individual atoms are affected when light is absorbed.

While current studies focus on movement of atoms in germanium, this is the first time that researchers have been able to look at any material in such detail. As the research progresses, it has the potential to revolutionise the speed and capacity of data transfer through optical fibres on the internet and even unlock how atom-level photosynthesis works, with the possibility for it to be replicated to increase energy storage capacity.

To read more, click here.