For nearly half a century, theoretical physicists have made a series of discoveries that certain constants in fundamental physics seem extraordinarily fine-tuned to allow for the emergence of a life-enabling universe. Constants that crisscross the Standard Model of Particle Physics guided the formation of hydrogen nuclei during the Big Bang, along with the carbon and oxygen atoms initially fused at the center of massive first-generation stars that exploded as supernovae; these processes in turn set the stage for solar systems and planets capable of supporting carbon-based life dependent on water and oxygen.

The theory that an Anthropic Principle guided the physics and evolution of the universe was initially proposed by Brandon Carter while he was a post-doctoral researcher in astrophysics at the University of Cambridge; this theory was later debated by Cambridge scholar Stephen Hawking and a widening web of physicists around the world.

German scholar Ulf-G Meißner, chair in theoretical nuclear physics at the Helmholtz Institute, University of Bonn, adds to a series of discoveries that support this Anthropic Principle.

In a new study titled "Anthropic considerations in nuclear physics" and published in the Beijing-based journal Science Bulletin (previously titled Chinese Science Bulletin), Professor Meißner provides an overview of the Anthropic Principle (AP) in astrophysics and particle physics and states: "One can indeed perform physics tests of this rather abstract [AP] statement for specific processes like element generation."

"This can be done with the help of high performance computers that allow us to simulate worlds in which the fundamental parameters underlying take values different from the ones in Nature," he explains.

To read more, click here.