A research group at the NIMS International Center for Materials Nanoarchitectonics and a research team at the Institute for Solid State Physics of the University of Tokyo discovered that in an atomic-scale-thick superconductor formed on a silicon surface, a single-atom difference in height between atomic layers (atomic step) acts as a Josephson junction that controls the flow of supercurrent. The results of this research have been published in the Physical Review Letters ("Imaging Josephson Vortices on the Surface Superconductor Si(111)-(7√×3√)-In using a Scanning Tunneling Microscope").
A research group at the NIMS (Sukekatsu Ushioda, president) International Center for Materials Nanoarchitectonics (MANA, Masakazu Aono, director), consisting of post-doctoral researcher Shunsuke Yoshizawa, MANA researcher Takashi Uchihashi, MANA principal investigator Tomonobu Nakayama, post-doctoral researcher Takuto Kawakami and MANA principal investigator Xiao Hu, and a research team at the Institute for Solid State Physics of the University of Tokyo, consisting of post-doctoral researcher Kim Howon and associate professor Yukio Hasegawa, discovered that in an atomic-scale thick superconductor formed on a silicon surface, a single-atom difference in height between atomic layers (atomic step) acts as a Josephson junction that controls the flow of supercurrent.