The behaviour of strongly correlated electron systems, such as high temperature superconductors, defies explanation in the language of ordinary quantum theory. A seemingly unrelated area of physics, string theory, might give physicists a better understanding of the weird behaviour of this kind of collective electron system. A bird's eye view was recently published in Nature by five world experts in the field, among which Jan Zaanen from Leiden University/Delta Institute for Theoretical Physics.

Up until the mid-1980s, it was commonly thought that superconductivity – the complete loss of electrical resistance in a material – only occurred at temperatures below 30 K. The discovery of high-temperature superconductivity in copper oxides (1986) ranks among the major scientific events of the 20th century. In less than a decade, temperatures went up to a mind-blowing 165 K, promising in a near future. But to reach that point, new theoretical descriptions are indispensable. That is the take-home message from an extensive review in this week's Nature by five leading experts in the field.

To read more, click here.