In 2013 James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, and colleagues at Columbia demonstrated that they could dramatically improve the performance of graphene—highly conducting two-dimensional (2D) carbon—by encapsulating it in boron nitride (BN), an insulating material with a similar layered structure.

In work published this week in the Advance Online Publication on Nature Nanotechnology's website, researchers at Columbia Engineering, Harvard, Cornell, University of Minnesota, Yonsei University in Korea, Danish Technical University, and the Japanese National Institute of Materials Science have shown that the performance of another 2D material— (MoS2)—can be similarly improved by BN-encapsulation.

"These findings provide a demonstration of how to study all 2D materials," says Hone, leader of this new study and director of Columbia's NSF-funded Materials Research Science and Engineering Center. "Our combination of BN and graphene electrodes is like a 'socket' into which we can place many other materials and study them in an extremely clean environment to understand their true properties and potential. This holds great promise for a broad range of applications including high-performance electronics, detection and emission of light, and chemical/bio-sensing."

To read more, click here.