One of the big questions scientists are asking with experiments at the Large Hadron Collider is this: Does every fundamental particle we know about have a hidden partner that we have yet to meet?
 
A popular set of theories predict that they do.
 
The first run of the LHC came and went without any of these partner particles turning up. But a recent paper shows that the real test of the theories that predict their existence could happen during the next run, when particles will collide at higher energies than ever before.
 
These theoretical partner particles come from the idea of Supersymmetry, or SUSY, a mathematical framework developed over the past 40 years that could answers questions such as: Are all of the forces we know just parts of a single, unified force? How is the Higgs boson so light? What is dark matter? Is the world made up of the tiny, vibrating strings described by string theory?
 
A key aspect of SUSY is that each of the dozens of particles in the Standard Model of particle physics must have a partner, called a superparticle or sparticle. Scientists think all of these sparticles must ultimately decay into a light, stable particle. If they are light enough, supersymmetric particles that interact through the strong force, such as supersymmetric quarks (squarks) or supersymmetric gluons (gluinos), could be produced at large rates at the LHC.

To read more, click here.