New work from a team including Carnegie’s Christopher Glein has revealed the pH of water spewing from a geyser-like plume on Saturn’s moon Enceladus. Their findings are an important step toward determining whether life could exist, or could have previously existed, on the sixth planet’s sixth-largest moon.
Enceladus is geologically active and thought to have a liquid water ocean beneath its icy surface. The hidden ocean is the presumed source of the plume of water vapor and ice that the Cassini spacecraft has observed venting from the moon’s south polar region. Whenever there’s the possibility of liquid water on another planetary body, scientists begin to ask whether or not it could support life.
The present team, including lead author Glein, John Baross of the University of Washington, and J. Hunter Waite Jr. of the Southwest Research Institute, developed a new chemical model based on mass spectrometry data of ice grains and gases in Enceladus’ plume gathered by Cassini, in order to determine the pH of Enceladus’ ocean. The pH tells us how acidic or basic the water is. It is a fundamental parameter to understanding geochemical processes occurring inside the moon that are considered important in determining Enceladus’ potential for acquiring and hosting life. Their work is published in the journal Geochimica et Cosmochimica Acta.
To read more, click here.