Friction is an important fact of life, robbing efficiency from anything where two surfaces interact with each other, such as engines and wheels. Lubrication can reduce the amount of friction, but it's never possible to get rid of it entirely.
In some rare cases, however, it's been possible to get the coefficient of friction to drop dramatically. A phenomenon called superlubricity occurs when two perfectly flat surfaces with incompatible crystal structures slide past each other. It's only been observed in extremely small samples, however, as larger surfaces have imperfections that tend to get stuck as they slide around.
Now, researchers have managed to create superlubricity in a large sample. They do so by getting graphene to wrap around nanoscopic diamonds, creating something akin to tiny ball bearings.
The authors of the new paper, a team from Argonne National Lab, were initially intending to study the traditional type of superlubricity. They reasoned that graphene and diamonds would have incompatible surfaces, and hoped that coating two surfaces with them would allow them to slide with minimal friction. Although friction was low, it didn't fall into the superlubricity category.
To read more, click here.