The standard model of particle physics, which describes every particle we know of and how they interact, was given much credence when the Higgs boson was discovered in 2012. Now, measurements of a rare particle-physics decay at the Large Hadron Collider offer further support for the model – but also hints at ways to find out what lies beyond it.
The standard model is cherished by physicists because it can explain most of the fundamental phenomena in nature by referencing just a handful of elementary particles.
These particles include quarks (one of the components of an atom) and electron-like particles called leptons – along with their so-called antiparticles which are identical but have opposite charge. The model also includes the particles that carry forces between them (photons, gluons, W and Z bosons) and the Higgs.
The picture this model provides is remarkably complete and precise – given its (relative) simplicity and the huge variety of very different phenomena which it can explain with amazing accuracy.
Even the sun has spots …
But the standard model is far from perfect. For starters, it does not include gravity. Also, the elementary particles it describes so successfully make up just 4% of the matter in the universe. The rest is a mysterious substance dubbed "dark matter" whose composition we still don't know. This is one of the reasons why scientists doubt that the standard model can be the true theory of everything".
To read more, click here.