A new semiliquid battery developed by researchers at The University of Texas at Austin has exhibited encouraging early results, encompassing many of the features desired in a state-of-the-art energy-storage device. In particular, the new battery has a working voltage similar to that of a lithium-ion battery, a power density comparable to that of a supercapacitor, and it can maintain its good performance even when being charged and discharged at very high rates.
The researchers, led by Assistant Professor Guihua Yu, along with Yu Ding and Yu Zhao, at UT Austin, have published their paper on the new membrane-free, semiliquid battery in a recent issue of Nano Letters. The researchers explain that the battery is considered "semiliquid" because it uses a liquid ferrocene electrolyte, a liquid cathode, and a solid lithium anode.
"The greatest significance of our work is that we have designed a semiliquid battery based on a new chemistry," Yu told Phys.org. "The battery shows excellent rate capability that can be fully charged or discharged almost within one minute while maintaining good energy efficiency and reasonable energy density, representing a promising prototype liquid redox battery with both high energy density and power density for energy storage."
The battery is designed for applications in two of the biggest areas of battery technology: hybrid electric vehicles and energy storage for renewable energy resources.
To read more, click here.